Antifouling and Antioxidant Properties of PVDF Membrane Modified with Polyethylene Glycol Methacrylate and Propyl Gallate

Author:

Wang Ting12,Hu Jun1,Hou Zhengchi3ORCID,Yang Haijun3

Affiliation:

1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

Abstract

In this study, molecules of propyl gallate (PG) and polyethylene glycol methacrylate (PEGMA) were covalently bonded via a transesterification reaction and subsequently grafted onto polyvinylidene fluoride substrates using a homogeneous radiation grafting technique. The enhancement of the membranes’ hydrophilicity with the increment of the grafting rate was corroborated by scanning electron microscopy imaging and measurements of the water contact angle. At a grafting degree of 10.1% and after a duration of 4 min, the water contact angle could decrease to as low as 40.1°. Cyclic flux testing demonstrated that the membranes modified in this manner consistently achieved a flux recovery rate exceeding 90% across varying degrees of grafting, indicating robust anti-fouling capabilities. Furthermore, these modified membranes exhibited significant antioxidant ability while maintaining antifouling performance over 30 days. The ability of the modified membranes to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) free radicals remained nearly unchanged after being stored in pure water for 30 days, and the flux recovery rate remained above 95% after immersion in sodium hypochlorite solution for 30 days. Among the tested membranes, the PVDF-g-PEGMAG modified membrane with a grafting degree of 7.2% showed the best antioxidant effect.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3