Comparing Electrochemical Passivation and Surface Film Chemistry of 654SMO Stainless Steel and C276 Alloy in Simulated Flue Gas Desulfurization Condensates

Author:

Liao Luhai123,Cheng Yifan3,Zhang He3,Yuan Xuwen3,Li Fengguang3

Affiliation:

1. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Wuhan University of Science and Technology, Wuhan 430081, China

3. School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

Abstract

This research examines the behavior of electrochemical passivation and the chemistry of surface films on 654SMO super austenitic stainless steel and C276 nickel-based alloy in simulated condensates from flue gas desulfurization in power plant chimneys. The findings indicate that the resistance to polarization of the protective film on both materials initially rises and then falls with either time spent in the solution or the potential of anodic polarization. Comparatively, 654SMO exhibits greater polarization resistance than C276, indicating its potential suitability as a chimney lining material. Mott–Schottky analysis demonstrates that the density of donors in the passive film formed on 654SMO exceeds that on C276, potentially due to the abundance of Fe oxide in the passive film, which exhibits the characteristics of an n-type semiconductor. The primary components of the passive films on both materials are Fe oxides and Cr oxides. The formation of a thin passive film on C276 in the simulated condensates is a result of the low Gibbs free energy of nickel oxide and low Cr content. The slower diffusion coefficient of point defects leads to the development of a thicker and more compact passive film on the surface of 654SMO.

Funder

Research Project of Hubei Provincial Department of Education

PhD Research Startup Foundation of Hubei University of Automotive Technology

Key Laboratory of Automotive Power Train and Electronics

Hubei Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3