Affiliation:
1. Institute for Polymers and Composites, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
Abstract
Selective laser sintering (SLS) is one of the most well-regarded additive manufacturing (AM) sub-processes, whose popularity has been increasing among numerous critical and demanding industries due to its capabilities, mainly manufacturing parts with highly complex geometries and desirable mechanical properties, with potential to replace other, more expensive, conventional processes. However, due to its various underlying multi-physics phenomena, the intrinsic complexity of the SLS process often hampers its industrial implementation. Such limitation has motivated academic interest in obtaining better insights into the process to optimize it and attain the required standards. In that regard, the usual experimental optimization methods are time-consuming and expensive and can fail to provide the optimal configurations, leading researchers to resort to computational modeling to better understand the process. The main objective of the present work is to develop a computational model capable of simulating the SLS process for polymeric applications, within an open-source framework, at a particle-length scale to assess the main process parameters’ impact. Following previous developments, virgin and used polymer granules with different viscosities are implemented to better represent the actual process feedstock. The results obtained agree with the available experimental data, leading to a powerful tool to study, in greater detail, the SLS process and its physical parameters and material properties, contributing to its optimization.
Funder
Fundação para a Ciência e Tecnologia
European Regional Development Fund through the Operational Competitiveness and Internationalization Programme
Reference43 articles.
1. (2015). Terminology for Additive Manufacturing Technologies. F42 Committee. Standard No. ASTM F2792-12a.
2. (2024, January 20). 3D Printing Technology Comparison: FDM vs. SLA vs. SLS. Available online: https://formlabs.com/blog/fdm-vs-sla-vs-sls-how-to-choose-the-right-3d-printing-technology/.
3. (2014). Performance Limitations in Polymer Laser Sintering. Phys. Procedia, 56, 147–156.
4. Computational Modelling of the Selective Laser Sintering Process;Castro;AIP Conf. Proc.,2023
5. An investigation on mechanical properties of PA12 parts produced by a SLS 3D printer: An experimental approach;Razaviye;CIRP J. Manuf. Sci. Technol.,2022
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献