Automatic Water Control System and Environment Sensors in a Greenhouse

Author:

Hilal Yousif YakoubORCID,Khessro Montaser KhairieORCID,van Dam JosORCID,Mahdi KarrarORCID

Abstract

Iraqi greenhouses require an active microcontroller system to ensure a suitable microclimate for crop production. At the same time, reliable and timely Water Consumption Rate (WCR) forecasts provide an essential means to reduce the amount of water loss and maintain the environmental conditions inside the greenhouses. The Arduino micro-controller system is tested to determine its effectiveness in controlling the WCR, Temperature (T), Relative Humidity (RH), and Irrigation Time (IT) levels and improving plant growth rates. The Arduino micro-controller system measurements are compared with the traditional methods to determine the quality of the work of the new control system. The development of mathematical models relies on T, RH, and IT indicators. Based on the results, the new system proves to reliably identify the amount of WCR, IT, T, and RH necessary for plant growth. A t-test for the values from the Arduino microcontroller system and traditional devices for both conditions show no significant difference. This means that there is solid evidence that the WCR, IT, T, and RH levels for these two groups are no different. In addition, the linear, two-factor interaction (2FI), and quadratic models display acceptable performance very well since multiple coefficients of determination (R2) reached 0.962, 0.969, and 0.977% with IT, T, and RH as the predictor variables. This implies that 96.9% of the variability in the WCR is explained by the model. Therefore, it is possible to predict weekly WCR 14 weeks in advance with reasonable accuracy.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3