Abstract
Iron oxyhydroxides (FeOOHs) appear to be the optimal group of materials among inorganic adsorbents for the removal of phosphates from water, providing significant adsorption capacities. This research work presents a thermodynamic study of phosphate adsorption by examining five different FeOOHs sorbent nanomaterials. The otablebtained results indicated that the adsorption process in these cases was spontaneous. When the experiments were performed using distilled water, akageneite (GEH), schwertmannite, and tetravalent manganese feroxyhyte (AquAsZero), displaying ΔH° values of 31.2, 34.7, and 7.3 kJ/mole, respectively, presented an endothermic adsorption process, whereas for goethite (Bayoxide) and lepidocrocite, with ΔH° values of −11.4 and −7.7 kJ/mole, respectively, the adsorption process proved to be exothermic. However, when an artificial (according to NSF) water matrix was used, GEH, schwertmannite, lepidocrocite, and AquAsZero presented ΔH° values of 13.2, 3.3, 7.7, and 3.3 kJ/mole, respectively, indicative of an endothermic process, while only for Bayoxide, with ΔH° of −17 kJ/mole, the adsorption remained exothermic. The adsorption enthalpy values generally decreased with the NSF water matrix, probably due to the competition for the same adsorption sites by other co-existing anions as well to the possible formation of soluble phosphate complexes with calcium; however, an overall positive effect on the uptake of phosphates was observed.
Funder
co-Financed by the European Union and the Greek State Program PAVET, Project (PhoRe-SE)-“Recovery of Phosphorus from the Secondary Effluent of Municipal Wastewater Treatment”
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献