Arbuscular Mycorrhizal Fungi Promote Gleditsia sinensis Lam. Root Growth under Salt Stress by Regulating Nutrient Uptake and Physiology

Author:

Ma Shilin,Zhu Lingjun,Wang Jinping,Liu Xin,Jia Zhaohui,Li Chong,Liu Jing,Zeng Jingyi,Zhang Jinchi

Abstract

Towards the improvement of plant productivity in saline–alkali soils, the application of arbuscular mycorrhizal fungi (AMF) is an intensive topic of research. For this study, three inoculation treatments, namely, autoclaved AMF inocula (CK), Funneliformis mosseae (FM), and Corymbiglomus tortuosum (CT), and four NaCl levels, namely, 0, 50, 100, and 150 mM were established to investigate the growth and physiological responses of mycorrhizal Gleditsia sinensis Lam. root systems to increase salinity through root dry weight, morphology, nutrient content, and physiology, and soil nutrient content. As NaCl levels increased, root dry weight, morphology, and nutrient content under the CK treatment exhibited a downward trend, while FM and CT treatments weakened this trend and significantly improved root dry weight and morphology, which increased by more than 200%. Under high NaCl levels, root activity under the FM treatment was significantly higher than that under the CK, with an average increase of 120.86%. In contrast to the activity of nitrate reductase, niacinamide adenine dinucleotide oxidase activity under CK was significantly less than that in FM and CT treatments. Moreover, inoculation with AMF significantly affected soil alkali-hydrolyzable nitrogen (AN), total nitrogen (TN), and phosphorus (TP), while NaCl had no significant impact on soil nutrients. Further, both soil salinity and mycorrhizal colonization rate had significant direct effects on root growth. However, soil salinity primarily influenced root growth through indirect effects on root nitrogen content, while mycorrhizal colonization rate indirectly impacted root nitrate reductase activity, and root nitrogen and phosphorus content. Our results suggested that the use of suitable AMF (e.g., Funneliformis mosseae) might effectively improve the currently unfavorable situation of economic tree species production on land with saline soils, which may greatly optimize the utility of these areas.

Funder

the Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3