Special Issue: Materials for Nuclear Waste Immobilization

Author:

Hyatt ,Ojovan

Abstract

Nuclear energy is clean, reliable, and competitive with many useful applications, among which power generation is the most important as it can gradually replace fossil fuels and avoid massive pollution of environment. A by-product resulting from utilization of nuclear energy in both power generation and other applications, such as in medicine, industry, agriculture, and research, is nuclear waste. Safe and effective management of nuclear waste is crucial to ensure sustainable utilization of nuclear energy. Nuclear waste must be processed to make it safe for storage, transportation, and final disposal, which includes its conditioning, so it is immobilized and packaged before storage and disposal. Immobilization of waste radionuclides in durable wasteform materials provides the most important barrier to contribute to the overall performance of any storage and/or disposal system. Materials for nuclear waste immobilization are thus at the core of multibarrier systems of isolation of radioactive waste from environment aimed to ensure long term safety of storage and disposal. This Special Issue analyzes the materials currently used as well as novel materials for nuclear waste immobilization, including technological approaches utilized in nuclear waste conditioning pursuing to ensure efficiency and long-term safety of storage and disposal systems. It focuses on advanced cementitious materials, geopolymers, glasses, glass composite materials, and ceramics developed and used in nuclear waste immobilization, with the performance of such materials of utmost importance. The book outlines recent advances in nuclear wasteform materials including glasses, ceramics, cements, and spent nuclear fuel. It focuses on durability aspects and contains data on performance of nuclear wasteforms as well as expected behavior in a disposal environment.

Publisher

MDPI AG

Subject

General Materials Science

Reference16 articles.

1. An Introduction to Nuclear Waste Immobilisation;Ojovan,2019

2. Cementitious Materials for Nuclear Waste Immobilization;Abdel Rahman,2015

3. Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience;Lee,2013

4. Waste Forms Technology and Performance: Final Report,2011

5. Application of inorganic cements to the conditioning and immobilisation of radioactive wastes;Glasser,2011

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3