Affiliation:
1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
2. School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
Abstract
In recent years, the utilization of deep learning for forest fire detection has yielded favorable outcomes. Nevertheless, the accurate segmentation of forest fires in foggy surroundings with limited visibility remains a formidable obstacle. To overcome this challenge, a collaborative defogging learning framework, known as Defog DeepLabV3+, predicated on an enhanced DeepLabV3+ model is presented. Improved learning and precise flame segmentation are accomplished by merging the defogging features produced by the defogging branch in the input image. Furthermore, dual fusion attention residual feature attention (DARA) is proposed to enhance the extraction of flame-related features. The FFLAD dataset was developed given the scarcity of specifically tailored datasets for flame recognition in foggy environments. The experimental findings attest to the efficacy of our model, with a Mean Precision Accuracy (mPA) of 94.26%, a mean recall (mRecall) of 94.04%, and a mean intersection over union (mIoU) of 89.51%. These results demonstrate improvements of 2.99%, 3.89%, and 5.22% respectively. The findings reveal that the suggested model exhibits exceptional accuracy in foggy conditions, surpassing other existing models across all evaluation metrics.
Funder
Natural Science Foundation of Jiangsu Province
Qing Lan Project of Jiangsu Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献