Abstract
The kinetics of the hydrolysis and polycondensation reactions of saccharides have made the subject of numerous studies, due to their importance in several industrial sectors. The present work, presents a novel kinetic modeling framework that is specifically well-suited to reacting systems under strict moisture control that favor the polycondensation reactions towards the formation of high-degree polysaccharides. The proposed model is based on an extended and generalized kinetic scheme, including also the presence of polyols, and is formulated using two different numerical approaches, namely a deterministic one in terms of the method of moments and a stochastic kinetic Monte Carlo approach. Accordingly, the most significant advantages and drawbacks of each technique are clearly demonstrated and the most fitted one (i.e., the Monte Carlo method) is implemented for the modeling of the system under different conditions, for which experimental data were available. Through these comparisons it is shown that the model can successfully follow the evolution of the reactions up to the formation of polysaccharides of very high degrees of polymerization.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献