The Response of Dissolved Organic Matter during Monsoon and Post-Monsoon Periods in the Regulated River for Sustainable Water Supply

Author:

Jin Mei-Yan,Oh Hye-JiORCID,Shin Kyung-Hoon,Jang Min-Ho,Kim Hyun-Woo,Choi Bohyung,Lin Zi-Yu,Heo Jeong Sook,Oh Jong-Min,Chang Kwang-HyeonORCID

Abstract

Dissolved organic matter (DOM) in rivers are an important factor in pollution management due to the abundance of stored carbon. Using fluorescent spectroscopy, we investigated the temporal and spatial dynamics of DOM compositions, as well as their properties, for two of the major four regulated rivers—Han River (HR) and Geum River (GR) in South Korea. We collected eight sampling sites, four from each of the two rivers (from close to the weirs) in order to observe the integrated effects of different land use (terrestrial input) during the monsoon (July) and post-monsoon periods (September). High integral values of DOM compositions (July: 30.81 ± 9.71 × 103 vs. September: 1.78 ± 0.66 × 103) were present in all eight sites after heavy rainfall during the monsoon period, which indicated that Asian monsoon climates occupy a potent role in the DOM compositions of the rivers. Regarding DOM compositions, tryptophan-like and fulvic acid-like components were predominant in HR and GR, especially in GR with high integral values of protein-like and humus components. However, the properties of terrestrial DOM between HR and GR are markedly different. These results considered due to the different land use, where the terrestrial DOM shows a low degree of humification due to a high percentage of agriculture and urban land use in GR. Furthermore, these two rivers are typical regulated rivers, due to their weir constructions. High values of DOM components were present in the downstream of the weirs; however, increasingly high patterns appeared in the HR because of heavy rainfall (511.01 mm in HR; 376.33 mm in GR). In addition, a lower increasing trend of humic-like component was present in the GR due to a low percentage of forest land use/cover. These results suggest that the effect of the weir on rivers can be highlighted by the different percentages of land use/cover under the conditions of the monsoon period. Hence, DOM fluorescence can serve as an effective indicator for providing an early signal for the complex impacts of the different land use and rainfall in the regulated river systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3