Understanding the Stability of Passenger Vehicles Exposed to Water Flows through 3D CFD Modelling

Author:

Al-Qadami Ebrahim Hamid Hussein1,Razi Mohd Adib Mohammad1,Damanik Wawan Septiawan2,Mustaffa Zahiraniza3,Martinez-Gomariz Eduardo4ORCID

Affiliation:

1. Eco Hydrology Technology Research Centre (Eco-Hytech), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia

2. Department of Mechanical Engineering, Universitas Muhammadiyah Sumatera Utara, Jl. Mukhtar Basri No. 3, Medan 20238, Indonesia

3. Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

4. Department of Civil and Environmental Engineering, Flumen Research Institute, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Abstract

A vehicle exposed to flooding may lose its stability and wash away resulting in potential injuries and fatalities. Traffic disruption, infrastructure damage, and economic losses are also additional effects of the washed vehicles. Therefore, understanding the responses of passenger vehicles during flood events is of the utmost importance to reduce flood risks and develop accurate safety guidelines. Previously, flooded vehicle stability was investigated experimentally, theoretically, and numerically. However, numerical investigations are insufficient, of which only a few studies have been published since 1967. Furthermore, coupled motion simulations have not been employed to investigate the hydrodynamic forces on flooded vehicles. In this paper, a numerical framework was proposed to assess the response of a full-scale medium-size passenger vehicle exposed to floodwaters through three-dimensional computational fluid dynamic modelling. The vehicle was simulated under subcritical and supercritical flows with the Froude number ranging between 0.09 and 2.46. The results showed that the vehicle experienced the floating instability mode once the flow depth reached 0.38 m, while the sliding instability mode was observed once the depth×velocity threshold function exceeded 0.36 m2/s. In terms of hydrodynamic forces, it was noticed that the drag force decreased with the increment of the Froude number and flow velocity. On the other hand, the fraction and buoyancy forces are mainly governed by the flow depth at the vehicle vicinity. The drag coefficient was noticed to be less than 1 for supercritical flows and more than 1 for subcritical flows. The numerical results obtained through the framework introduced in this study demonstrate favorable agreement with three different previously published experimental outcomes.

Funder

Institute for Research and Community Service, Universitas Muhammadiyah Sumatera Utara

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3