Persistence of E. coli O157:H7 in Frozen Soils: Role of Freezing Temperature

Author:

Wang Jiawei12,Liao Jiafen2,Ma Jinhua2,Lyu Guangze2,Yang Xiaoyin3,Ibekwe Abasiofiok M.4ORCID,Ma Jincai12ORCID

Affiliation:

1. Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China

2. Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China

3. School of Business and Management, Jilin University, Changchun 130012, China

4. USDA-ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA

Abstract

Soilborne pathogen infections are increasingly reported globally in recent years. Infectious agents have contaminated most of seasonal frozen zone and have been found in permafrost due to the effects of intensified human activities on global warming. Therefore, in regard to sustainable agriculture, it is particularly important to assess the environmental behavior of those pathogens in frozen soils. Due to high pathogenicity and low infection threshold, E. coli O157:H7 (EcO157) is a worldwide public health concern, and recent studies have focused more on its fate in the environment. The survival of this serotype in a large variety of environmental media under temperature above 0 °C has been investigated, while its persistence in frozen soils has received less attention. In this study, we collected soils with different textures from a seasonally frozen zone in northeast China and investigated the persistence of EcO157 in soils at freezing temperatures (−5 °C and −15 °C) and moisture content (30% and 60% water holding capacity (WHC)) of the soils. By fitting the survival data with a Weibull model, we obtained three parameters: first log reduction time (δ in days), survival curve shape parameters (p), and monthly average reduction in EcO157 (MAR, log·gdw−1·mon−1). The results showed that temperature has a major impact on persistence, while moisture content has less effect on the survival of EcO157. Further multi-variable analysis revealed that the physical and chemical properties (e.g., sand fraction) of soil play an important role in survival. Certain bacterial groups are significantly correlated with the survival of EcO157 in frozen soils at −5 °C but not for the ones incubated at −15 °C. Our data could provide background data to evaluate the health risk associated with EcO157. The results could be helpful to improve sustainable soil practices and to develop regulations and policies aiming to achieve sustainable agriculture.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3