Long-Term Prediction of Hydrometeorological Time Series Using a PSO-Based Combined Model Composed of EEMD and LSTM

Author:

Wu Guodong12,Zhang Jun2,Xue Heru1

Affiliation:

1. College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010026, China

2. College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

The accurate long-term forecasting of hydrometeorological time series is crucial for ensuring the sustainability of water resources, environmental conservation, and other related fields. However, hydrometeorological time series usually have strong nonlinearity, non-stationarity, and complexity. Therefore, it is extremely challenging to make long-term forecasts of hydrometeorological series. Deep learning has been widely applied in time series prediction across various fields and exhibits exceptional performance. Among the many deep learning techniques, Long Short-Term Memory (LSTM) neural networks possess robust long-term predictive capabilities for time series analysis. Signal decomposition technology is utilized to break down the time series into multiple low complexity and highly stationary sub-sequences, which are then individually trained using LSTM before being reconstructed to generate accurate predictions. This approach has significantly advanced the field of time series prediction. Therefore, we propose an EEMD-LSTM-PSO model, which employs Ensemble Empirical Mode Decomposition (EEMD), to decompose the hydrometeorological time series and subsequently construct an LSTM model for each component. Furthermore, the Particle Swarm Optimization (PSO) algorithm is utilized to optimize the coefficients and reconstruct the final prediction outcomes. The performance of the EEMD-LSTM-PSO model is evaluated by comparing it with four other models using four evaluation indicators: root mean square error (RMSE), mean absolute percentage error (MAPE), correlation coefficient (R), and Nash coefficient (NSE) on three real hydrometeorological time series. The experimental results show that the proposed model exhibits exceptional performance compared with the other four models, and effectively predicts long-term hydrometeorological time series.

Funder

Center for Applied Mathematics of Inner Mongolia

Interdisciplinary Research Fund of Inner Mongolia Agricultural University

Research Program of Science and Technology at the University of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

Inner Mongolia Agricultural University High-Level Talents Scientific Research Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3