Carbon Management for Intelligent Community with Combined Heat and Power Systems

Author:

Cao Yongsheng123ORCID,Zhao Caiping4,Li Demin1ORCID

Affiliation:

1. College of Information Science and Technology, Donghua University, Shanghai 201620, China

2. Department of Intelligent Science and Information Law, East China University of Political Science and Law, Shanghai 200042, China

3. China Institute for Smart Court, Shanghai Jiao Tong University, Shanghai 200030, China

4. Shanghai South of City Power Supply Company, Shanghai 201100, China

Abstract

In recent years, solar power technology and energy storage technology have advanced, leading to the increased use of solar power devices and energy storage systems in residential areas. Carbon management has become an important method to help the community manager guide energy consumption in a timely manner, effectively reduce the carbon emissions of the community, and reduce the substantial harm to the environment. This paper aims to study the issue of carbon management and resource allocation in an intelligent community with combined heat and power (CHP) systems and solar power. The presence of heterogeneous load demands in the power grid was considered. The main objective was to minimize the average system cost over time, which included the costs associated with the power grid and gas. The Lyapunov optimization theory was employed to solve the non-convex optimization problem of carbon management and resource allocation without energy sharing. To solve the energy-sharing problem, we designed an energy-sharing algorithm based on the Q-learning algorithm. Lastly, we conducted extensive simulations using actual trace data to validate the effectiveness of our proposed algorithms.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3