Three-Dimensional Porous ZnO-Supported Carbon Fiber Aerogel with Synergistic Effects of Adsorption and Photocatalysis for Organics Removal

Author:

Wan Wubo1,Li Yu1,Bai Shiwei1,Yang Xiaoyan2,Chi Mingming3,Shi Yaqin1,Liu Changhua3,Zhang Peng3ORCID

Affiliation:

1. Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China

2. Engineering Research Center for Optoelectronic Functional Materials of Henan Province, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China

3. State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China

Abstract

A three-dimensional (3D) ZnO-supported carbon fiber aerogel (ZnO/CFA) was successfully prepared by using natural cotton with hydrophilicity as the precursor. The facile synthetic strategy includes two steps: Zn2+ exchange on the surface of cotton and thermal treatment at high temperatures. Particularly, the calcination temperature was found to greatly affect the content, dispersity, and size of supported ZnO nanoparticles, and the product obtained at 600 °C (ZnO/CFA-600) exhibited both high ZnO loading and well-dispersed ZnO nanoparticles. Therefore, ZnO/CFA-600 has superior photocatalytic activity for tetracycline (TC) degradation under UV light irradiation compared with others. Additionally, the unique 3D crosslinking network inside the ZnO/CFA generates an open channel for the rapid migration and diffusion of reactants and products. In a dynamical water-treated system, the 3D porous ZnO/CFA-600 continuously works for TC removal without any separation operation and maintains high synergistic performance of adsorption and photocatalysis for at least 8 h. Consequently, the 3D porous ZnO/CFA product, with its large adsorbability and high photoactivity, shows a lot of industrial potential in wastewater treatments.

Funder

Youth Project of Yazhou Bay Innovation Institute of Hainan Tropical Ocean University

National Natural Science Foundation of China

Hainan Province Science and Technology Special Fund

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3