Numerical Investigations of Tribological Characteristics of Biomimetic-Textured Surfaces

Author:

Wang Cheng1ORCID,Cai Jianlin1,Cheng Gong2,Wang Jiaxu13,Tang Dongxing1ORCID

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China

2. School of Mechanical Engineering and Automation, Chongqing Industry Polytechnic College, Chongqing 401120, China

3. School of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

Rail transportation has dramatically improved travel convenience, but it has also led to environmental pollution and energy consumption issues. These challenges can be partially addressed by reducing friction loss in the mechanical transmission of rail systems. This paper examines the tribological properties of bionic-textured surfaces inspired by snake- and sharkskin. This study focuses on generating bionic textured surfaces with randomly distributed peaks through numerical simulation and connecting them to a transient Reynolds equation and friction fatigue model. The bionic surface wear lubrication model considers the lubricating film’s thickness and contact pressure obtained from the GT model. The results reveal that the existence of a bionic texture can reduce the friction coefficient and wear amount on the contact surface. The findings of this study not only offer a potential solution for reducing energy consumption and emissions in intelligent rail transit systems but also hold promise for providing further insights into the numerical simulation of bionic weaving and the investigation of tribological characteristics.

Funder

National Natural Science Foundation of China

General Projects of Basic Science and Frontier Technology Research of Chongqing

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3