Forecasting Pedestrian Movements Using Recurrent Neural Networks: An Application of Crowd Monitoring Data

Author:

Duives Dorine,Wang Guangxing,Kim JiwonORCID

Abstract

Currently, effective crowd management based on the information provided by crowd monitoring systems is difficult as this information comes in at the moment adverse crowd movements are already occurring. Up to this moment, very little forecasting techniques have been developed that predict crowd flows a longer time period ahead. Moreover, most contemporary state estimation methods apply demanding pre-processing steps, such as map-matching. The objective of this paper is to design, train and benchmark a data-driven procedure to forecast crowd movements, which can in real-time predict crowd movement. This procedure entails two steps. The first step comprises of a cell sequence derivation method that allows the representation of spatially continuous GPS traces in terms of discrete cell sequences. The second step entails the training of a Recursive Neural Network (RNN) with a Gated Recurrent Unit (GRU) and six benchmark models to forecast the next location of pedestrians. The RNN-GRU is found to outperform the other tested models. Some additional tests of the ability of the RNN-GRU to forecast illustrate that the RNN-GRU preserves its predictive power when a limited amount of data is used from the first few hours of a multi-day event and temporal information is incorporated in the cell sequences.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. Estimating Pedestrian Destinations Using Traces from WiFi Infrastructures;Danalet,2014

2. Real-Time System for Counting the Number of Passing People Using a Single Camera;Kim,2003

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3