Thinning Response and Potential Basal Area—A Case Study in a Mixed Sub-Humid Low-Elevation Oak-Hornbeam Forest

Author:

Neumann MathiasORCID,Hasenauer HubertORCID

Abstract

Competition for resources (light, water, nutrients, etc.) limits the size and abundance of live trees a site can support. This carrying capacity determines the potential carbon sequestration in live trees and the maximum growing stock. Lower stocking through thinning can change growth and mortality. We were interested in the relations between stand structure, increment, and mortality using a long-unmanaged oak-hornbeam forest near Vienna, Austria, as a case study. We expected lower increment for heavily thinned compared to unmanaged stands. We tested the thinning response using three permanent growth plots, in which two were thinned (50% and 70% basal area removed) and one remained unmanaged. We calculated stand structure (basal area, stem density, diameter distribution) and increment and mortality of single trees. Over ten years, the heavily thinned stand had a similar increment as that of the moderately thinned and unthinned stands. The basal area of the unthinned stand remained constant and stem density decreased due to competition-related mortality. The studied oak-hornbeam stands responded well even to late and heavy thinning, suggesting a broad “plateau” of stocking and increment for these forest types. Lower stem density for thinned stands led to a much larger tree increment of single trees, compared to the unthinned reference. The findings of this study need verification for other soil and climatic conditions.

Funder

Universität für Bodenkultur Wien

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3