“E = mc2” of Environmental Flows: A Conceptual Framework for Establishing a Fish-Biological Foundation for a Regionally Applicable Environmental Low-Flow Formula

Author:

Parasiewicz Piotr,Prus Paweł,Suska Katarzyna,Marcinkowski Paweł

Abstract

Determination of environmental flows at the regional scale has been complicated by the fine-scale variability of the needs of aquatic organisms. Therefore, most regional methods are based on observation of hydrological patterns and lack evidence of connection to biological responses. In contrast, biologically sound methods are too detailed and resource-consuming for applications on larger scales. The purpose of this pilot project was to develop an approach that would breach this gap and provide biologically sound rules for environmental flow (eflow) estimation for the region of Poland. The concept was developed using seven river sites, which represent the four of six fish-ecological freshwater body types common in Poland. Each of these types was distinguished based on a specific fish community structure, composed of habitat-use guilds. The environmental significance of the flows for these communities was established with help of the habitat simulation model MesoHABSIM computed for each of the seven sites. The established seasonal environmental flow thresholds were standardized to the watershed area and assigned to the corresponding water body type. With these obtained environmental flow coefficients, a standard-setting formula was created, which is compatible with existing standard-setting approaches while maintaining biological significance. The proposed approach is a first attempt to use habitat suitability models to justify a desktop formula for the regional scale eflow criteria.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3