Streaming Feature Selection for Multi-Label Data with Dynamic Sliding Windows and Feature Repulsion Loss

Author:

Li Yu,Cheng Yusheng

Abstract

In recent years, there has been a growing interest in the problem of multi-label streaming feature selection with no prior knowledge of the feature space. However, the algorithms proposed to handle this problem seldom consider the group structure of streaming features. Another shortcoming arises from the fact that few studies have addressed atomic feature models, and particularly, few have measured the attraction and repulsion between features. To remedy these shortcomings, we develop the streaming feature selection algorithm with dynamic sliding windows and feature repulsion loss (SF-DSW-FRL). This algorithm is essentially carried out in three consecutive steps. Firstly, within dynamic sliding windows, candidate streaming features that are strongly related to the labels in different feature groups are selected and stored in a fixed sliding window. Then, the interaction between features is measured by a loss function inspired by the mutual repulsion and attraction between atoms in physics. Specifically, one feature attraction term and two feature repulsion terms are constructed and combined to create the feature repulsion loss function. Finally, for the fixed sliding window, the best feature subset is selected according to this loss function. The effectiveness of the proposed algorithm is demonstrated through experiments on several multi-label datasets, statistical hypothesis testing, and stability analysis.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3