Affiliation:
1. Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China
Abstract
Basic leucine zipper (bZIP) transcription factors play significant roles in plants’ growth and development processes, as well as in response to biological and abiotic stresses. Hypericum perforatum is one of the world’s top three best-selling herbal medicines, mainly used to treat depression. However, there has been no systematic identification or functional analysis of the bZIP gene family in H. perforatum. In this study, 79 HpbZIP genes were identified. Based on phylogenetic analysis, the HpbZIP gene family was divided into ten groups, designated A–I and S. The physicochemical properties, gene structures, protein conserved motifs, and Gene Ontology enrichments of all HpbZIPs were systematically analyzed. The expression patterns of all genes in different tissues of H. perforatum (i.e., root, stem, leaf, and flower) were analyzed by qRT-PCR, revealing the different expression patterns of HpbZIP under abiotic stresses. The HpbZIP69 protein is localized in the nucleus. According to the results of the yeast one-hybrid (Y1H) assays, HpbZIP69 can bind to the HpASMT2 (N-acetylserotonin O-methyltransferase) gene promoter (G-box cis-element) to activate its activity. Overexpressing HpbZIP69 in Arabidopsis wild-type lines enhanced their tolerance to drought. The MDA and H2O2 contents were significantly decreased, and the activity of superoxide dismutase (SOD) was considerably increased under the drought stress. These results may aid in additional functional studies of HpbZIP transcription factors, and in cultivating drought-resistant medicinal plants.
Funder
National Natural Science Foundation of China
Foundation of the Shaanxi Academy of Sciences
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent Advances in Plant Drought Tolerance;Journal of Plant Growth Regulation;2024-05-18