A Novel NOX Inhibitor Alleviates Parkinson’s Disease Pathology in PFF-Injected Mice

Author:

Ofori Kwadwo1,Ghosh Anurupa1ORCID,Verma Dinesh Kumar1ORCID,Wheeler Darice1,Cabrera Gabriela1,Seo Jong-Bok2,Kim Yong-Hwan1ORCID

Affiliation:

1. Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA

2. Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Republic of Korea

Abstract

Oxidative stress-mediated damage is often a downstream result of Parkinson’s disease (PD), which is marked by sharp decline in dopaminergic neurons within the nigrostriatal regions of the brain, accounting for the symptomatic motor deficits in patients. Regulating the level of oxidative stress may present a beneficial approach in preventing PD pathology. Here, we assessed the efficacy of a nicotinamide adenine phosphate (NADPH) oxidase (NOX) inhibitor, an exogenous reactive oxygen species (ROS) regulator synthesized by Aptabio therapeutics with the specificity to NOX-1, 2 and 4. Utilizing N27 rat dopaminergic cells and C57Bl/6 mice, we confirmed that the exposures of alpha-synuclein preformed fibrils (PFF) induced protein aggregation, a hallmark in PD pathology. In vitro assessment of the novel compound revealed an increase in cell viability and decreases in cytotoxicity, ROS, and protein aggregation (Thioflavin-T stain) against PFF exposure at the optimal concentration of 10 nM. Concomitantly, the oral treatment alleviated motor-deficits in behavioral tests, such as hindlimb clasping, rotarod, pole, nesting and grooming test, via reducing protein aggregation, based on rescued dopaminergic neuronal loss. The suppression of NOX-1, 2 and 4 within the striatum and ventral midbrain regions including Substantia Nigra compacta (SNc) contributed to neuroprotective/recovery effects, making it a potential therapeutic option for PD.

Funder

ApatBio Therapeutics Inc

NIH-R15

NIH Delaware Neuroscience Center

NIH-U-RISE

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3