Knockdown of BAP31 Downregulates Galectin-3 to Inhibit the Wnt/β-Catenin Signaling Pathway to Modulate 5-FU Chemosensitivity and Cancer Stemness in Colorectal Cancer

Author:

Liu Jingjing1,Zhang Qi1,Wang Jiyu1,Wang Changli1,Lan Tian1,Wang Tianyi1,Wang Bing1ORCID

Affiliation:

1. Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China

Abstract

Increased stemness is causally linked to the development of chemoresistance in cancers. B-cell receptor-associated protein 31 (BAP31) has been identified to play an oncogenic role in many types of cancer. However, the role of BAP31 in 5-fluorouracil (5-FU) chemosensitivity and stemness of colorectal cancer (CRC) is still unknown. The aim of this study was to investigate the biological function and molecular mechanism of BAP31 in regulating 5-FU chemosensitivity and stemness. The correlation between BAP31 expression and 5-FU chemosensitivity was examined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and colony formation assays. Cancer stemness was analyzed using tumor sphere formation and Western blot assays. Western blot and immunofluorescence analyses of the knockdown cell lines were performed to explore the possible mechanisms. Finally, we investigated the function of BAP31 by constructing xenograft nude mouse models in vivo. In this study, we demonstrated that BAP31 was increased in CRC cells, and knockdown of BAP31 reduced the half maximal inhibitory concentration (IC50) of 5-FU, while this effect was reversed by overexpression of BAP31. In addition, knockdown of BAP31 substantially reduced the stemness of CRC cells in vitro. Consistently, knockdown of BAP31 significantly suppressed the tumorigenicity and stemness of CRC in vivo. The functional study further suggested that knockdown of BAP31 downregulated galectin-3 to inhibit the accumulation of β-catenin, which in turn repressed the transcription of downstream target genes (c-MYC, SOX2) of the Wnt/β-catenin signaling pathway. Knockdown of BAP31 reduced stemness by inhibiting the Wnt/β-catenin signaling pathway to increase 5-FU chemosensitivity. Importantly, intrabodies against BAP31 suppressed tumor growth and enhanced the antitumor effects of 5-FU in vivo. Therefore, using intrabodies against BAP31 may be a strategy for improving the antitumor effect of 5-FU in CRC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Liaoning Revitalization Talents Program

Key Research and Development Plan of Liaoning Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference65 articles.

1. Colorectal cancer;Dekker;Lancet,2019

2. Colorectal cancer;Brenner;Lancet,2014

3. Colorectal Cancer Surgical Treatment, our Experience;Salibasic;Med. Arch.,2019

4. Treatment of Metastatic Colorectal Cancer: ASCO Guideline;Morris;J. Clin. Oncol.,2023

5. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future;Vodenkova;Clin. Pharmacol. Ther.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3