Development, Establishment, and Validation of a Model for the Mineralization of Periodontium Remodelling Cells: Cementoblasts

Author:

Bhargava Shruti1,Jankowski Joachim123,Merckelbach Erik1,Roth Charlotte Elisa4,Craveiro Rogerio Bastos4ORCID,Wolf Michael4

Affiliation:

1. Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany

2. Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, 52062 Aachen, Germany

3. Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6211 Maastricht, The Netherlands

4. Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074 Aachen, Germany

Abstract

Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, β-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, β-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, β-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L−1 of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L−1 β-glycerolphosphate, 75 µmol L−1 ascorbic acid and 10 nmol L−1 dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.

Funder

Deutsche Forschungsgemeinschaft

Federal Ministry of Education and Research

European Union EU-ITN-H2020

Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3