Two-Component Rare-Earth Fluoride Materials with Negative Thermal Expansion Based on a Phase Transition-Type Mechanism in 50 RF3-R’F3 (R = La-Lu) Systems

Author:

Sobolev Boris P.1,Sulyanova Elena A.1ORCID

Affiliation:

1. Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia

Abstract

The formation of materials with negative thermal expansion (NTE) based on a phase transition-type mechanism (NTE-II) in 50 T–x (temperature–composition) RF3-R’F3 (R = La-Lu) systems out of 105 possible is predicted. The components of these systems are “mother” RF3 compounds (R = Pm, Sm, Eu, and Gd) with polymorphic transformations (PolTrs), which occur during heating between the main structural types of RF3: β-(β-YF3) → t-(mineral tysonite LaF3). The PolTr is characterized by a density anomaly: the formula volume (Vform) of the low-temperature modification (Vβ-) is higher than that of the high-temperature modification (Vt-) by a giant value (up to 4.7%). In RF3-R’F3 systems, isomorphic substitutions chemically modify RF3 by forming R1−xR’xF3 solid solutions (ss) based on both modifications. A two-phase composite (β-ss + t-ss) is a two-component NTE-II material with adjustable parameters. The prospects of using the material are estimated using the parameter of the average volume change (ΔV/Vav). The Vav at a fixed gross composition of a system is determined by the β-ss and t-ss decay (synthesis) curves and the temperature T. The regulation of ΔV/Vav is achieved by changing T within a “window ΔT”. The available ΔT values are determined using phase diagrams. A chemical classification (ChCl) translates the search for NTE-II materials from 15 RF3 into an array of 105 RF3-R’F3 systems. Phase diagrams are divided into 10 types of systems (TypeSs), in four of which NTE-II materials are formed. The tables of the systems that comprise these TypeSs are presented. The position of Ttrans of the PolTr on the T scale for a short quasi-system (QS) “from PmF3 to TbF3” determines the interval of the ΔTtrans offset achievable in the RF3-R’F3 systems: from −148 to 1186 ± 10 °C. NTE-II fluoride materials exceed known NTE-II materials by almost three times in this parameter. Equilibrium in RF3-R’F3 systems is established quickly. The number of qualitatively different two-component fluoride materials with the giant NTE-II can be increased by more than ten times compared to RF3 with NTE-II.

Funder

State Assignment of FSRC “Crystallography and Photonics” RAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference34 articles.

1. Sobolev, B.P. (2000). The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of the Rare Earth Trifluorides, Institut d’Estudis Catalans.

2. Rare Earth Fluorides;Gscheidner;Handbook on the Physics and Chemistry of Rare Earths,1982

3. Spedding, F.H., and Daane, A.H. (1961). The Rare Earths, John Willey and Sons, Inc.

4. Polymorphism and crystallographic properties of yttrium and rare earth trifluorides;Sobolev;Sov. Phys. Crystallogr.,1974

5. Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3;Greve;J. Am. Chem. Soc.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3