Stachydrine Hydrochloride Regulates the NOX2-ROS-Signaling Axis in Pressure-Overload-Induced Heart Failure

Author:

Lu Shuang1,Liang Yueyang1,Yang Songru1,Fu Mengwei1,Shan Xiaoli2,Zhang Chen3,Chen Huihua1,Zhao Pei2,Lu Rong1ORCID

Affiliation:

1. School of Traditional Chinese Medicine, SHUTCM, Shanghai 201203, China

2. Public Experiment Platform, School of Traditional Chinese Medicine, SHUTCM, Shanghai 201203, China

3. Department of Pathology, School of Intergrative Medicine, SHUTCM, Shanghai 201203, China

Abstract

Our previous studies revealed the protection of stachydrine hydrochloride (STA) against cardiopathological remodeling. One of the underlying mechanisms involves the calcium/calmodulin-dependent protein kinase Ⅱ (CaMKII). However, the way STA influences CaMKII needs to be further investigated. The nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-coupled reactive oxygen species (ROS) overproduction putatively induces the oxidative activation of CaMKII, resulting in the occurrence of pathological cardiac remodeling and dysfunction in experimental models of mice. Thus, in this study, we assessed the role of the NOX2-ROS signal axis in STA cardioprotection. The transverse aortic constriction (TAC)-induced heart failure model of mice, the phenylephrine-induced hypertrophic model of neonatal rat primary cardiomyocytes, and the H2O2-induced oxidative stress models of adult mouse primary cardiomyocytes and H9c2 cells were employed. The echocardiography and histological staining were applied to assess the cardiac effect of STA (6 mg/kg/d or 12 mg/kg/d), which was given by gavage. NOX2, ROS, and excitation-contraction (EC) coupling were detected by Western blotting, immunofluorescence, and calcium transient-contraction synchronous recordings. ROS and ROS-dependent cardiac fibrosis were alleviated in STA-treated TAC mice, demonstrating improved left ventricular ejection fraction and hypertrophy. In the heart failure model of mice and the hypertrophic model of cardiomyocytes, STA depressed NOX2 protein expression and activation, as shown by inhibited translocation of its phosphorylation, p67phox and p47phox, from the cytoplasm to the cell membrane. Furthermore, in cardiomyocytes under oxidative stress, STA suppressed NOX2-related cytosolic Ca2+ overload, enhanced cell contractility, and decreased Ca2+-dependent regulatory protein expression, including CaMKⅡ and Ryanodine receptor calcium release channels. Cardioprotection of STA against pressure overload-induced pathological cardiac remodeling correlates with the NOX2-coupled ROS signaling cascade.

Funder

Shanghai Municipal Commission of Health and Family Planning

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3