Conditional Deletion of Foxg1 Delayed Myelination during Early Postnatal Brain Development

Author:

Cao Guangliang1,Sun Congli2,Shen Hualin1,Qu Dewei1,Shen Chuanlu3,Lu Haiqin1

Affiliation:

1. Department of Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, China

2. Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China

3. Department of Pathophysiology, School of Medicine, Southeast University, Nanjing 210009, China

Abstract

FOXG1 (forkhead box G1) syndrome is a neurodevelopmental disorder caused by variants in the Foxg1 gene that affect brain structure and function. Individuals affected by FOXG1 syndrome frequently exhibit delayed myelination in neuroimaging studies, which may impair the rapid conduction of nerve impulses. To date, the specific effects of FOXG1 on oligodendrocyte lineage progression and myelination during early postnatal development remain unclear. Here, we investigated the effects of Foxg1 deficiency on myelin development in the mouse brain by conditional deletion of Foxg1 in neural progenitors using NestinCreER;Foxg1fl/fl mice and tamoxifen induction at postnatal day 0 (P0). We found that Foxg1 deficiency resulted in a transient delay in myelination, evidenced by decreased myelin formation within the first two weeks after birth, but ultimately recovered to the control levels by P30. We also found that Foxg1 deletion prevented the timely attenuation of platelet-derived growth factor receptor alpha (PDGFRα) signaling and reduced the cell cycle exit of oligodendrocyte precursor cells (OPCs), leading to their excessive proliferation and delayed maturation. Additionally, Foxg1 deletion increased the expression of Hes5, a myelin formation inhibitor, as well as Olig2 and Sox10, two promoters of OPC differentiation. Our results reveal the important role of Foxg1 in myelin development and provide new clues for further exploring the pathological mechanisms of FOXG1 syndrome.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3