Affiliation:
1. School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
2. Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
3. Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
Abstract
Different from the diverse family Pectinidae, the Spondylidae is a small group with a single genus that shares the sedentary life habit of cementing themselves to the substrate. However, little information related to the genetic diversity of Spondylidae has been reported. In the present study, the complete mitochondrial genomes of Spondylus versicolor and S. spinosus were sequenced and compared with those of pectinids. The mtDNA of S. versicolor and S. spinosus show similar patterns with respect to genome size, AT content, AT skew, GC skew, and codon usage, and their mitogenomic sizes are longer than most pectinid species. The mtDNA of S. spinosus is 27,566 bp in length, encoding 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes, while an additional tRNA-Met was found in the mtDNA of S. versicolor, which is 28,600 bp in length. The monophylies of Spondylidae and Pectinidae were well supported, but the internal relationships within Pectinidae remain unresolved due to the paraphyly of the genus Mimachlamy and the controversial position of the tribe Aequipectinini. The gene orders of S. versicolor and S. spinosus are almost identical but differ greatly from species of the Pectinidae, indicating extensive gene rearrangements compared with Pectinidae. Positive selection analysis revealed evidence of adaptive evolution in the branch of Spondylidae. The present study could provide important information with which to understand the evolutionary progress of the diverse and economically significant marine bivalve Pectinoidea.
Funder
Key Research and Development Project of Hainan Province
Hainan Provincial Natural Science Foundation of China
National Key Research and Development Program of China
Hainan Province Graduate Innovation Project
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献