Role of Rho/MRTF in Aggressive Vemurafenib-Resistant Murine Melanomas and Immune Checkpoint Upregulation

Author:

Foda Bardees M.12ORCID,Neubig Richard R.13ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA

2. Molecular Genetics and Enzymology Department, National Research Centre, Dokki 12622, Egypt

3. Nicholas V. Perricone, M.D. Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48823, USA

Abstract

Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20–30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.

Funder

MSU College of Human Medicine Gran Fondo Fundraiser

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3