A Rigid–Flexible and Multi-Siloxane Bridge Strategy for Toughening Epoxy Resin with Promising Flame Retardancy, Mechanical, and Dielectric Properties

Author:

Li Dingsi1,Lin Shufeng1,Hao Jiahui1,He Baohan1,Zhang Huagui1,Chen Mingfeng1

Affiliation:

1. Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China

Abstract

Developing highly efficient and multifunctional epoxy resins (EPs) that overcome the shortcomings of flammability and brittleness is crucial for pursuing sustainable and safe application but remains a huge challenge. In this paper, a novel biomass-containing intumescent flame retardant containing a rigid–flexible and multi-siloxane bridge structure (DPB) was synthesized using siloxane; 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO); and biomass vanillin. DPB could facilitate the formation of a carbon residual with an intumescent structure, which effectively blocked the propagation of heat and oxygen. As a result, the peak heat release rate (pHRR) and total heat release (THR) of DPB/EP-7.5 decreased by 38.8% and 45.0%, respectively. In terms of mechanical properties, the tensile and flexural elongations at break of DPB/EP-7.5 increased by 77.2% and 105.3%, respectively. Impressively, DPB/EP-7.5 had excellent dielectric properties, with a dielectric constant of 2.5–2.9. This was due to the Si-O bonds (multi-siloxane bridges) contained in DPB/EP, which can quench the polarization behavior of the hydroxyl group. This paper provides a facile strategy for the preparation of multifunctional EP, which will pave the way for the promotion and application of EP in the high-end field.

Funder

Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3