A Two-Step Transcriptome Analysis of the Human Heart Reveals Broad and Disease-Responsive Expression of Ectopic Olfactory Receptors

Author:

Ashraf Sadia1,Frazier O. Howard2,Carranza Sylvia2,McPherson David D.1,Taegtmeyer Heinrich1ORCID,Harmancey Romain1ORCID

Affiliation:

1. Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

2. Texas Heart Institute at Baylor St. Luke’s Medical Center, Houston, TX 77030, USA

Abstract

G-protein-coupled receptors (GPCRs) are critical regulators of cardiac physiology and a key therapeutic target for the treatment of heart disease. Ectopic olfactory receptors (ORs) are GPCRs expressed in extra-nasal tissues which have recently emerged as new mediators in the metabolic control of cardiac function. The goals of this study were to profile OR gene expression in the human heart, to identify ORs dysregulated by heart failure caused by ischemic cardiomyopathy, and to provide evidence suggestive of a role for those altered ORs in the pathogenesis of heart failure. Left ventricular tissue from heart failure patients (n = 18) and non-failing heart samples (n = 4) were subjected to a two-step transcriptome analysis consisting of the quantification of 372 distinct OR transcripts on real-time PCR arrays and simultaneous determination of global cardiac gene expression by RNA sequencing. This strategy led to the identification of >160 ORs expressed in the human heart, including 38 receptors differentially regulated with heart failure. Co-expression analyses predicted the involvement of dysregulated ORs in the alteration of mitochondrial function, extracellular matrix remodeling, and inflammation. We provide this dataset as a resource for investigating roles of ORs in the human heart, with the hope that it will assist in the identification of new therapeutic targets for the treatment of heart failure.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3