Abstract
To build a comprehensive understanding of long-term hydro-mechanical processes that lead to shallow landslide hazards, this study explicitly monitored the volumetric water content (VWC) and rainfall amount for a weathered granite soil slope over a four year period. From the 12 operational landslide monitoring stations installed across South Korea, the Songnisan station was selected as the study site. VWC sensors were placed in the subsurface with a grid-like arrangement at depths of 0.5 and 1.0 m. Shallow landslide hazards were evaluated by applying an infinite slope stability model that adopted a previously proposed unified effective stress concept. By analyzing the variations in the monitored VWC values, the derived matric suctions and suction stresses, and the calculated factor of safety values, we were able to obtain numerous valuable insights. In particular, the seasonal effects of drainage and evapotranspiration on the slope moisture conditions and slope stability were addressed. Preliminary test results indicated that continuous rainfall successfully represented the derived matric suction conditions at a depth of 1.0 m in the lower slope, although this was not the case for the upper and middle slopes. The significance of a future study on cumulative field monitoring data from various sites in different geological conditions is highlighted.
Funder
Korea Institute of Geoscience and Mineral Resources
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献