Research on the Application of Typical Biological Chain for Algal Control in Lake Ecological Restoration—A Case Study of Lianshi Lake in Yongding River

Author:

Zhang Pengfei,Cui Xiaoyu,Luo Huihuang,Peng Wenqi,Gao Yunxia

Abstract

Maintaining the health of lake ecosystems is an urgent issue. However, eutrophication seriously affects lakes’ ecological functions. Eutrophication is also the main target of lake ecological restoration. It is vital to carry out research on lake eutrophication control and energy flow evaluation in ecosystems scientifically. Based on in situ survey results for the aquatic life data for Lianshi Lake from 2018 to 2019, the Ecopath model was used to establish an evaluation index system for the typical biological chain to screen out the key species in the water ecosystem, and the fuzzy comprehensive evaluation (FCE) method was used to screen all the biological chains controlling algae. A combination of the FCE coupled with the Ecopath screening method for typical biological chains for algal control was applied to the Lianshi Lake area; the results show that the typical biological chain for algal control is phytoplankton (Phyt)–zooplankton (Zoop)–macrocrustaceans (Macc)–other piscivorous (OthP). Upon adjusting the biomass of Zoop and Macc in the typical biological chain for algal control to three times that of the current status, the ecological nutrition efficiency of Phyt was increased from 0.308 to 0.906. The material flow into the second trophic level from primary producers increased from 3043 to 8283 t/km2/year. The amount of detritus flowing into primary producers for sedimentation decreased from 7618 to 2378 t/km2/year. Finally, the total primary production/total respiratory volume (TPP/TR) decreased from 9.224 to 3.403, the Finn’s cycle index (FCI) increased from 13.6% to 17.5%, and the Finn’s average energy flow path length (FCL) increased from 2.854 to 3.410. The results suggest that the problem of eutrophication can be solved by introducing Zoop (an algal predator) and Macc to a large extent, resulting in improved ecosystem maturity. The research results can facilitate decision making for the restoration of urban lake water ecosystems.

Funder

Major Science and Technology Program for Water Pollution Control and Treat-ment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3