Optimized Degradation and Inhibition of α-glucosidase Activity by Gracilaria lemaneiformis Polysaccharide and Its Production In Vitro

Author:

Long Xiaoshan,Hu Xiao,Zhou ShaoboORCID,Xiang Huan,Chen Shengjun,Li Laihao,Liu ShuchengORCID,Yang Xianqing

Abstract

Gracilaria lemaneiformis polysaccharide (GLP) exhibits good physiological activities, and it is more beneficial as it is degraded. After its degradation by hydrogen peroxide combined with vitamin C (H2O2-Vc) and optimized by Box–Behnken Design (BBD), a new product of GLP-HV will be generated. While using GLP as control, two products of GLP-H (H2O2-treated) and GLP-V (Vc-treated) were also produced. These products chemical characteristics (total sugar content, molecular weight, monosaccharide composition, UV spectrum, morphological structure, and hypolipidemic activity in vitro) were assessed. The results showed that the optimal conditions for H2O2-Vc degradation were as follows: H2O2-Vc concentration was 18.7 mM, reaction time was 0.5 h, and reaction temperature was 56 °C. The total sugar content of GLP and its degradation products (GLP-HV, GLP-H and GLP-V) were more than 97%, and their monosaccharides are mainly glucose and galactose. The SEM analysis demonstrated that H2O2-Vc made the structure loose and broken. Moreover, GLP, GLP-HV, GLP-H, and GLP-V had significantly inhibition effect on α-glucosidase, and their IC50 value were 3.957, 0.265, 1.651, and 1.923 mg/mL, respectively. GLP-HV had the best inhibition effect on α-glucosidase in a dose-dependent manner, which was the mixed type of competitive and non-competitive. It had a certain quenching effect on fluorescence of α-glucosidase, which may be dynamic quenching.

Funder

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3