PlantCrystals—Nanosized Plant Material for Improved Bioefficacy of Medical Plants

Author:

Abraham Abraham M.,Alnemari Reem M.,Jacob ClausORCID,Keck Cornelia M.

Abstract

PlantCrystals are obtained by milling plant material to sizes < 10 µm. Due to the disruption of the plant cells, active compounds are easily released, rendering the PlantCrystal technology an effective and low-cost process for the production of environmentally friendly plant extracts. The extracts can be used to produce phytomedicines, nutritional supplements or cosmetic products. Previous studies could already demonstrate the use of PlantCrystals to improve the antimicrobial or antifungal activity of different plants. This study investigated whether PlantCrystal technology is suitable to produce plant derived formulations with high antioxidant capacity. The study also aimed to identify the most suitable production methods for this. Methods: Various plant materials and parts of plants, i.e., seeds, leaves and flowers, and different methods were employed for the production. PlantCrystals were characterized regarding size, physical stability and antioxidant capacity (AOC). Results: PlantCrystals with particles < 1 µm were produced from the different plant materials. Both production methods, i.e., high-pressure homogenization, bead milling or the combination of both were suitable to obtain PlantCrystals. Nano milling of the plant material greatly affected their AOC and resulted in formulations with distinctly higher AOC when compared to classical extracts. Conclusions: Rendering plant material into small sized particles is highly effective to obtain plant extracts with high biological efficacy.

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Plant Extracts Market by Type (Phytomedicines & Herbal Extracts, Essential Oils, Spices, Flavors & Fragrances), Application (Pharmaceuticals & Dietary Supplements, Food & Beverages, Cosmetics), Source, and Region—Global Forecast to 2025—REPORT CODE FB 1399 https://www.marketsandmarkets.com/Market-Reports/plant-extracts-market-942.html

2. Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Health

3. Loranthus micranthusnanoparticles abates streptozotocin‐instigated testicular dysfunction in Wistar rats: Involvement of glucose metabolism enzymes, oxido‐inflammatory stress, steroidogenic enzymes/protein and Nrf2 pathway

4. Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?

5. Natural Nanoparticles: A Particular Matter Inspired by Nature

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3