Abstract
This work highlights the use of Fe-modified MgAl-layered double hydroxides (LDHs) to replace dye and semiconductor complexes in dye-sensitized solar cells (DSSCs), forming a layered double hydroxide solar cell (LDHSC). For this purpose, a MgAl-LDH and a Fe-modified MgAl LDH were prepared. X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy were used to analyze the structural properties, morphology, and success of the Fe-modification of the synthesized LDHs. Ultraviolet-visible (UV-Vis) absorption spectroscopy was used to analyze the photoactive behavior of these LDHs and compare it to that of TiO2 and dye-sensitized TiO2. Current-voltage (I–V) solar simulation was used to determine the fill factor (FF), open circuit voltage (VOC), short circuit current (ISC), and efficiency of the LDHSCs. It was shown that the MgFeAl-LDH can act as a simultaneous photoabsorber and charge separator, effectively replacing the dye and semiconductor complex in DSSCs and yielding an efficiency of 1.56%.
Subject
General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献