Experimental Investigation and Statistical Evaluation of Optimized Cutting Process Parameters and Cutting Conditions to Minimize Cutting Forces and Shape Deviations in Al6026-T9

Author:

Abas MuhammadORCID,Salah BashirORCID,Khalid Qazi SalmanORCID,Hussain Iftikhar,Babar Abdur Rehman,Nawaz Rashid,Khan RazaullahORCID,Saleem WaqasORCID

Abstract

Precise, economical and sustainable cutting operations are highly desirable in the advanced manufacturing environment. For this aim, the present study investigated the influence of cutting parameters (i.e., the cutting speed (c), feed rate (f), depth of cut (d) and positive rake angle (p)) and sustainable cutting conditions (dry and minimum quantity lubricant (MQL)) on cutting forces (i.e., feed force (Ff), tangential forces (Ft), radial force (Fr) and resultant cutting forces (Fc) and shape deviations (i.e., circularity and cylindricity) of a 6026-T9 aluminum alloy. The type of lubricant and insert used are virgin olive oil and uncoated tungsten carbide tool. Turning experiments were performed on a TAKISAWA TC-1 CNC lathe machine and cutting forces were measured with the help of a Kistler 9257B dynamometer. Shape deviations were evaluated by means of a Tesa Micro-Hite 3D DCC 474 coordinate measuring machine (CMM). Experimental runs were planned based on Taguchi mixture orthogonal array design L16. Analysis of variance (ANOVA) was performed to study the statistical significance of cutting parameters. Taguchi based signal to noise (S/N) ratios are applied for optimization of single response, while for optimization of multiple responses Taguchi based signal to noise (S/N) ratios coupled with multi-objective optimization on the basis of ratio analysis (MOORA) and criteria importance through inter-criteria correlation (CRITIC) are employed. ANOVA results revealed that feed rate, followed by a depth of cut, are the most influencing and contributing factors for all components of cutting forces (Ff, Ft, Fr, and Fc) and shape deviations (circularity and cylindricity). The optimized cutting parameters obtained for multi responses are c = 600 m/min, f = 0.1 mm/rev, d = 1 mm and p = 25°, while for cutting conditions, MQL is optimal.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3