Interface Shear Strength at Various Joint Types in High-Strength Precast Concrete Structures

Author:

Kim Young-Jin,Chin Won-JongORCID,Jeon Se-JinORCID

Abstract

More precast concrete structures have recently been constructed due to their many advantages when compared to conventional cast-in-place construction. Structural behavior at the joints between the precast segments can significantly affect the overall integrity, safety, and serviceability of the structure. In this study, therefore, the interface shear strength of high-strength precast members was investigated by performing push-off tests with the following variables: compressive strength of precast members, dry or wet joint, number and height of shear keys, joint width, filler type, curing temperature, and lateral compressive stress. The test results were analyzed to reveal the effect of each test variable on the joint shear strengths of the specimens. For instance, the failure loads were increased by 14–140%, depending on the lateral compressive stress, as the specified compressive strength of the precast members was increased from 80 to 150 MPa in the dry joints. The failure loads of the wet joints strongly depended on the strength of the filler rather than on that of the precast members and, as a result, the specimen with ultra-high-strength concrete filler was 46–48% stronger than those with high-strength mortar filler. The shear strengths of various joint types obtained from the test were further analyzed in comparison with the predictive equations of Japan Society of Civil Engineers (JSCE) and American Association of State Highway and Transportation Officials (AASHTO) with the aim of validating the appropriateness of these design provisions. In particular, an improved value of a coefficient in the JSCE equation is proposed to cover a range of compressive strengths in various precast members and filling materials.

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. State-of-the-Art Report on High-Strength Concrete,1992

2. High-Performance Concrete;Aïtcin,1998

3. Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community;Russell,2013

4. Application of Ultra-High Performance Concrete in bridge engineering

5. State-of-the-Art Report on Precast Concrete Systems for Rapid Construction of Bridges;Hieber,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3