Author:
Li Yang,Xia Jihong,Khenata Rabah,Kuang Minquan
Abstract
Topological materials with band-crossing points exhibit interesting electronic characteristics and have special applications in electronic devices. However, to further facilitate the experimental detection of the signatures of these band crossings, topological materials with a large linear energy range around the band-crossing points need to be found, which is challenging. Here, via first-principle approaches, we report that the previously prepared P6/mmm-type CrB2 material is a topological metal with one pair of 1D band-crossing points, that is, nodal lines, in the kz= 0 plane, and one pair of 0D band-crossing points, that is, triple points, along the A–Γ–A’ paths. Remarkably, around these band-crossing points, a large linear energy range (larger than 1 eV) was found and the value was much larger than that found in previously studied materials with a similar linear crossing. The pair of nodal lines showed obvious surface states, which show promise for experimental detection. The effect of the spin–orbit coupling on the band-crossing points was examined and the gaps induced by spin–orbit coupling were found to be up to 69 meV. This material was shown to be phase stable in theory and was synthesized in experiments, and is therefore a potential material for use in investigating nodal lines and triple points.
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献