Zinc Oxide Nanocomposites—Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential

Author:

Pomastowski PawełORCID,Król-Górniak Anna,Railean-Plugaru VioricaORCID,Buszewski BogusławORCID

Abstract

This research presents, for the first time, the potential of the Lactobacillus paracasei LC20 isolated from sweet whey as a novel, effective and accessible source for post-cultured ZnO nanocomposites synthesis. The obtained nanocomposites were subjected to comprehensive characterization by a broad spectrum of instrumental techniques. Results of spectroscopic and microscopic analysis confirmed the hexagonal crystalline structure of ZnO in the nanometer size. The dispersion stability of the obtained nanocomposites was determined based on the zeta potential (ZP) measurements—the average ZP value was found to be −29.15 ± 1.05 mV in the 7–9 pH range. The ZnO nanocomposites (NCs) demonstrated thermal stability up to 130 °C based on the results of thermogravimetric TGA/DTG) analysis. The organic deposit on the nanoparticle surface was recorded by spectroscopic analysis in the infrared range (FT-IR). Results of the spectrometric study exhibited nanostructure-assisted laser desorption/ionization effects and also pointed out the presence of organic deposits and, what is more, allowed us to identify the specific amino acids and peptides present on the ZnO NCs surfaces. In this context, mass spectrometry (MS) data confirmed the nano-ZnO formation mechanism. Moreover, fluorescence data showed an increase in fluorescence signal in the presence of nanocomposites designed for potential use as, e.g., biosensors. Despite ZnO NCs’ luminescent properties, they can also act as promising antiseptic agents against clinically relevant pathogens. Therefore, a pilot study on the antibacterial activity of biologically synthesized ZnO NCs was carried out against four strains (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa) by using MIC (minimal inhibitory concentration). Additionally, the colony forming units (CFU) assay was performed and quantified for all bacterial cells as the percentage of viable cells in comparison to a control sample (untreated culture) The nanocomposites were effective among three pathogens with MIC values in the range of 86.25–172.5 μg/mL and showed potential as a new type of, e.g., medical path or ointment formulation.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3