A Method to Determine the Minimum Chip Thickness during Longitudinal Turning

Author:

Skrzyniarz MichalORCID

Abstract

Micromachining, which is used for various industrial purposes, requires the depth of cut and feed to be expressed in micrometers. Appropriate stock allowance and cutting conditions need to be selected to ensure that excess material is removed in the form of chips. To calculate the allowance, it is essential to take into account the tool nose radius, as this cutting parameter affects the minimum chip thickness. Theoretical and numerical studies on the topic predominate over experimental ones. This article describes a method and a test setup for determining the minimum chip thickness during turning. The workpiece was ground before turning to prevent radial runout and easily identify the transition zone. Contact and non-contact profilometers were used to measure surface profiles. The main aim of this study was to determine the tool–workpiece interaction stages and the cutting conditions under which material was removed as chips. Additionally, it was necessary to analyze how the feed, cutting speed, and edge radius influenced the minimum chip thickness. This parameter was found to be dependent on the depth of cut and feed. Elastic and plastic deformation and ploughing were observed when the feed rate was lower than the cutting edge radius.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference27 articles.

1. The assessment of the impact of the installation of cutting plates in the body of the cutter on the size of generated vibrations and the geometrical structure of the surface;Nowakowski;Eng. Mech.,2017

2. Milling with a tool with unevenly distributed cutting plates;Nowakowski;Eng. Mech.,2017

3. Determination of the minimum chip thickness and the effect of the plowing depth on the residual stress field in micro-cutting of 18 Ni maraging steel

4. Determination of minimum uncut chip thickness and size effects in micro-milling of P-20 die steel using surface quality and process signal parameters

5. Dimensional and Shape Accuracy of Foundry Patterns Fabricated Through Photo-Curing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3