Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles

Author:

Park Dong HyeokORCID,Jung Yeun Jung,Steve Jeo Kins Sandoz John Kinson,Kim Young Deok,Go Jeung SangORCID

Abstract

This paper presents a novel method to prevent blockages by embolic microspheres in catheter channels by using convex air bubbles attached to the channels’ inner wall surface. The clogging by microspheres can occur by the arching of the microspheres in the catheter. A few studies have been done on reducing the blockage, but their methods are not suitable for use with embolic catheters. In this study, straight catheter channels were fabricated. They had cavities to form convex air bubbles; additionally, a straight channel without the cavities was designed for comparison. Blockage was observed in the straight channel without the cavities, and the blockage arching angle was measured to be 70°, while no blockage occurred in the cavity channel with air bubbles, even at a geometrical arching angle of 85°. The convex air bubbles have an important role in preventing blockages by microspheres. The slip effect on the air bubble surface and the centrifugal effect make the microspheres drift away from the channel wall. It was observed that as the size of the cavity was increased, the drift distance became larger. Additionally, as more convex air bubbles were formed, the amount of early drift to the center increased. It will be advantageous to design a catheter with large cavities that have a small interval between them.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3