HS-SA-Based Precise Modeling of the Aircraft Fuel Center of Gravity Using Sensors Data

Author:

Guo Xiaoming,Zhang Jing,Tie Lin,Luo Mingqiang

Abstract

The traditional modeling methods of aircraft fuel center of gravity (CG) based on sensor data have some disadvantages, such as large data storage requirements and low computational efficiency. In this article, a novel hybrid heuristic search-simulated annealing (HS-SA) algorithm is used to reduce the data storage requirements and improve the efficiency of the established models based on sensor data. First, a fuel CG model is established based on the multidimensional interpolation of flight sensors and fuel tank data, which can accurately reflect the nonlinear characteristics of the problem and reduce the data storage needs. Then, the calculation nodes are reasonably selected and optimized based on the proposed HS-SA algorithm to improve the precision of the model of the aircraft fuel CG. The established model of the fuel CG has obvious advantages over traditional methods in improving the temporal efficiency and meeting the storage requirements for sensor data in actual flights. Finally, detailed simulations are conducted based on more than 16,000 sets of sensor data, and the results demonstrate the effectiveness of the proposed HS-SA algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Structure Design of Free Flight Model Based on Multi-Constrained Optimization;Zhang;Aircr. Des.,2018

2. Application and development of aircraft weight and center of gravity measurement technology;Liu;Aeronaut. Maintenance Eng.,2004

3. Influence of Center of Gravity Location on Flight Dynamic Stability in a Hovering Tailless FW-MAV: Longitudinal Motion

4. Impact of Micro-planes on the Stability of Lowering the Center of Gravity;Yuan;J. Aeronaut.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3