Pollutants Source Assessment and Load Calculation in Baiyangdian Lake Using Multi-Model Statistical Analysis

Author:

Wang Guangwei,Lv Cuicui,Gu Congke,Yu Yang,Yang ZhenglunORCID,Zhang ZhixiongORCID,Tang Changyuan

Abstract

Baiyangdian lake, the largest fresh lake on the Haihe Basin in North China, has attracted wide attention on account of the distinguished ecological water bodies in Xiong’an New Area. Although remarkable achievements have been made in pollution control in Baiyangdian lake, the problem facing the overall water environment remains serious. The complex pollutant sources, drastic pollutant flux changes, and the unclear impact of the role of pollutants pose great challenges to the water quality, water environment management, and long-term restoration of the ecological environment. Here, the potential pollution sources, their contribution ratio, and the influence of the pollution load of different sources on the water quality in the priority source areas of Baiyangdian lake are discussed in detail based on collected and existing monitoring data. It is proven that the primary pollution sources of for nitrogen, phosphorus, and organic pollutants are from agricultural and rural non-point source pollution; the load contribution rates exceed 50%, of which the contribution rate to the total phosphorus load reaches 73.37%. The total load contribution of runoff to the three pollutants was small, although the contribution of soil erosion to total nitrogen was 22.95%. The contribution of point source pollution to COD was high, with a rate of 22.33%. In order to ensure the environmental quality of Baiyangdian lake, it is obligatory to strengthen the control of agricultural and rural pollution discharge and to standardize the pollution discharge of livestock and poultry breeding. This study provides a helpful support for protecting the water ecology of the national Xiong’an New Area.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3