An Advanced Hybrid Technique of DCS and JSRC for Telemonitoring of Multi-Sensor Gait Pattern

Author:

Wu JianningORCID,Wang Jiajing,Ling Yun,Xu Haidong

Abstract

The jointly quantitative analysis of multi-sensor gait data for the best gait-classification performance has been a challenging endeavor in wireless body area networks (WBANs)-based gait telemonitoring applications. In this study, based on the joint sparsity of data, we proposed an advanced hybrid technique of distributed compressed sensing (DCS) and joint sparse representation classification (JSRC) for multi-sensor gait classification. Firstly, the DCS technique is utilized to simultaneously compress multi-sensor gait data for capturing spatio-temporal correlation information about gait while the energy efficiency of the sensors is available. Then, the jointly compressed gait data are directly used to develop a novel neighboring sample-based JSRC model by defining the sparse representation coefficients-inducing criterion (SRCC), in order to yield the best classification performance as well as a lower computational time cost. The multi-sensor gait data were selected from an open wearable action recognition database (WARD) to validate the feasibility of our proposed method. The results showed that when the comparison ratio and the number of neighboring samples are selected as 70% and 40%, respectively, the best accuracy (95%) can be reached while the lowest computational time spends only 60 ms. Moreover, the best accuracy and the computational time can increase by 5% and decrease by 40 ms, respectively, when compared with the traditional JSRC techniques. Our proposed hybrid technique can take advantage of the joint sparsity of data for jointly processing multi-sensor gait data, which greatly contributes to the best gait-classification performance. This has great potential for energy-efficient telemonitoring of multi-sensor gait.

Funder

Humanities and social sciences fund project from Ministry of Education, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3