Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models

Author:

Park Ji Hyun,Cho YongwonORCID,Shin Donghyeok,Choi Seong-SooORCID

Abstract

Severe burns may lead to a series of pathophysiological processes that result in death. Machine learning models that demonstrate prognostic performance can be used to build analytical models to predict postoperative mortality. This study aimed to identify machine learning models with the best diagnostic performance for predicting mortality in critically ill burn patients after burn surgery, and then compare them. Clinically important features for predicting mortality in patients after burn surgery were selected using a random forest (RF) regressor. The area under the receiver operating characteristic curve (AUC) and classifier accuracy were evaluated to compare the predictive accuracy of different machine learning algorithms, including RF, adaptive boosting, decision tree, linear support vector machine, and logistic regression. A total of 731 patients met the inclusion and exclusion criteria. The 90-day mortality of the critically ill burn patients after burn surgery was 27.1% (198/731). RF showed the highest AUC (0.922, 95% confidence interval = 0.902–0.942) among the models, with sensitivity and specificity of 66.2% and 93.8%, respectively. The most significant predictors for mortality after burn surgery as per machine learning models were total body surface area burned, red cell distribution width, and age. The RF algorithm showed the best performance for predicting mortality.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference38 articles.

1. The role of the inflammatory response in burn injury;Strudwick,2018

2. Pathophysiology of burn shock and burn edema;Kramer,2012

3. Data science and machine learning in anesthesiology

4. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality

5. What do we need to build explainable AI systems for the medical domain?;Holzinger;arXiv,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3