Large-Dynamic-Range Ocular Aberration Measurement Based on Deep Learning with a Shack–Hartmann Wavefront Sensor

Author:

Zhang Haobo1234,Zhao Junlei1356,Chen Hao13,Zhang Zitao134,Yin Chun2ORCID,Wang Shengqian134

Affiliation:

1. National Laboratory on Adaptive Optics, Chengdu 610209, China

2. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

3. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Eye School, Chengdu University of TCM, Chengdu 610075, China

6. Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, Chengdu 610075, China

Abstract

The Shack–Hartmann wavefront sensor (SHWFS) is widely utilized for ocular aberration measurement. However, large ocular aberrations caused by individual differences can easily make the spot move out of the range of the corresponding sub-aperture in SHWFS, rendering the traditional centroiding method ineffective. This study applied a novel convolutional neural network (CNN) model to wavefront sensing for large dynamic ocular aberration measurement. The simulation results demonstrate that, compared to the modal method, the dynamic range of our method for main low-order aberrations in ocular system is increased by 1.86 to 43.88 times in variety. Meanwhile, the proposed method also has the best measurement accuracy, and the statistical root mean square (RMS) of the residual wavefronts is 0.0082 ± 0.0185 λ (mean ± standard deviation). The proposed method generally has a higher accuracy while having a similar or even better dynamic range as compared to traditional large-dynamic schemes. On the other hand, compared with recently developed deep learning methods, the proposed method has a much larger dynamic range and better measurement accuracy.

Funder

National Natural Science Foundation of China

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3