Abstract
Path planning is one of the most important issues in the robotics field, being applied in many domains ranging from aerospace technology and military tasks to manufacturing and agriculture. Path planning is a branch of autonomous navigation. In autonomous navigation, dynamic decisions about the path have to be taken while the robot moves towards its goal. Among the navigation area, an important class of problems is Coverage Path Planning (CPP). The CPP technique is associated with determining a collision-free path that passes through all viewpoints in a specific area. This paper presents a method to perform CPP in 3D environment for Unmanned Aerial Vehicles (UAVs) applications, namely 3D dynamic for CPP applications (3DD-CPP). The proposed method can be deployed in an unknown environment through a combination of linear optimization and heuristics. A model to estimate cost matrices accounting for UAV power usage is proposed and evaluated for a few different flight speeds. As linear optimization methods can be computationally demanding to be used on-board a UAV, this work also proposes a distributed execution of the algorithm through fog-edge computing. Results showed that 3DD-CPP had a good performance in both local execution and fog-edge for different simulated scenarios. The proposed heuristic is capable of re-optimization, enabling execution in environments with local knowledge of the environments.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献