Somatotype and Bioimpedance Vector Analysis: A New Target Zone for Male Athletes

Author:

Campa FrancescoORCID,Silva Analiza M.,Talluri Jacopo,Matias Catarina N.,Badicu GeorgianORCID,Toselli StefaniaORCID

Abstract

Background: Bioelectrical impedance vector analysis (BIVA) is a body composition assessment method based on the interpretation of the raw bioimpedance parameters. While it was initially proposed in clinical settings, its use in the sports field has grown considerably. The aim of this study was: (i) to explore the role of somatotype on BIVA patterns and (ii) to propose a new target zone to improve BIVA analysis in ball games athletes. Methods: One hundred and sixty-four male volleyball, soccer, and rugby players (age 26.2 ± 4.4 yrs; body mass index (BMI) 25.4 ± 2.4 kg/m2) were included in this study. Somatotype and BIVA were measured from anthropometric and bioelectrical data, respectively. Results: Forty-six athletes were classified with an endomorphic mesomorphic somatotype, 26 showed a balanced mesomorphy, 55 were ectomorphic mesomorph, 10 resulted as mesomorph ectomorphs, 13 with a mesomorphic ectomorph somatotype, and in 14 athletes a balanced ectomorphy was assessed. The results of the Hotelling’s T2 test showed significant differences in BIVA patterns for the endomorphic mesomorph group (p < 0.001) in comparison with all the other groups, while mesomorphic balanced athletes presented a more inclined vector compared to the athletes with a balanced ectomorphy (p < 0.003). In addition, the endomorphic mesomorph group showed a greater BMI (p < 0.001) with respect to the athletes grouped in the other somatotype categories. Discriminant analysis revealed two significant functions (p < 0.001). The first discriminant function primarily represented differences based on the bioelectrical standardized resistance parameter (R/H) measure, while the second function reflected differences based on the bioelectrical standardized reactance parameter (Xc/H). Conclusions: Athletes presenting a higher endomorphic component have a lower vector, whereas those with a larger mesomorphic component display higher vector inclinations on the R-Xc graph. We propose a new target zone to improve the interpretation of BIVA analysis in athletes engaged in team sports.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3