Femtosecond Laser Irradiation to Zirconia Prior to Calcium Phosphate Coating Enhances Osteointegration of Zirconia in Rabbits

Author:

Mutsuzaki Hirotaka12,Yashiro Hidehiko3,Kakehata Masayuki3ORCID,Oyane Ayako4ORCID,Ito Atsuo5ORCID

Affiliation:

1. Center for Medical Science, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-0394, Japan

2. Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences Hospital, 4773 Ami, Ibaraki 300-0331, Japan

3. Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

4. Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

5. Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan

Abstract

Calcium phosphate (CaP) coating of zirconia and zirconia-based implants is challenging, due to their chemical instability and susceptibility to thermal and mechanical impacts. A 3 mol% yttrium-stabilized tetragonal zirconia polycrystal was subjected to femtosecond laser (FsL) irradiation to form micro- and submicron surface architectures, prior to CaP coating using pulsed laser deposition (PLD) and low-temperature solution processing. Untreated zirconia, CaP-coated zirconia, and FsL-irradiated and CaP-coated zirconia were implanted in proximal tibial metaphyses of male Japanese white rabbits for four weeks. Radiographical analysis, push-out test, alizarin red staining, and histomorphometric analysis demonstrated a much improved bone-bonding ability of FsL-irradiated and CaP-coated zirconia over CaP-coated zirconia without FsL irradiation and untreated zirconia. The failure strength of the FsL-irradiated and CaP-coated zirconia in the push−out test was 6.2–13.1-times higher than that of the CaP-coated zirconia without FsL irradiation and untreated zirconia. Moreover, the adhesion strength between the bone and FsL-irradiated and CaP-coated zirconia was as high as that inducing host bone fracture in the push-out tests. The increased bone-bonding ability was attributed to the micro-/submicron surface architectures that enhanced osteoblastic differentiation and mechanical interlocking, leading to improved osteointegration. FsL irradiation followed by CaP coating could be useful for improving the osteointegration of cement-less zirconia-based joints and zirconia dental implants.

Funder

JSPS KAKENHI Grant

AMED

Publisher

MDPI AG

Reference38 articles.

1. First clinical study of a novel complete metal-free ceramic total knee replacement system;Meier;J. Orthop. Surg. Res.,2016

2. Metal hypersensitivity after knee arthroplasty: Fact or fiction?;Innocenti;Acta Biomed.,2017

3. Zirconia versus titanium in dentistry: A review;Hanawa;Dent. Mater. J.,2020

4. Is zirconia a viable alternative to titanium for oral implant? A critical review;Sivaraman;J. Prosthodont. Res.,2018

5. Advances in MRI around metal;Jungmann;J. Magn. Reson. Imaging,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3